2024 2nd International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC) | 979-8-3503-6657-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICMACC62921.2024.10894649

2024 2nd International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC)

Cygnus: A Vision-Based Drone System for
Drowning Detection Using [oT

Dhumravarna Ambre

Hariharan Sureshkumar

Prasiddh Trivedi

Department of Computer Engineering Department of Computer Engineering Assistant Professor, Electrical Engineering

Ramrao Adik Institute of Technology
Navi Mumbai, India
dhumravarnaambre36 @ gmail.com

Abstract—With an estimated 236,000 fatalities each year and
7% of injury-related deaths worldwide, drowning is still a major
global concern. In light of drone technology, this study presents
a drowning detection system that makes use of IoT and AI/ML.
Although drowning events can happen to anyone, our strategy
concentrates on vision-based techniques because of their inherent
benefits, which include their non-intrusive nature and real-
time monitoring capabilities. Our focus on vision-based solutions
arises from the limitations of traditional wearable systems,
which include their dependence on life buoys and insufficient
infrastructure. Our technology provides an aerial perspective
of drowning incidents through a wireless drone network. By
merging RGB and IR vision, it improves detection accuracy across
a range of light, weather, and water conditions. We use edge
computing to maximize efficiency and deploy machine learning
models, particularly Convolutional Neural Networks (CNN), on
drone microprocessors to enable real-time drowning detection.
Furthermore, we use LoRa to create a Wireless Sensor Network
(WSN) to enable better drone cooperation and communication. In
summary, this work introduces a drone-based drowning detection
system that makes use of IoT and AI/ML. Our solution intends
to improve public safety, reduce drowning incidents, and maybe
save lives by addressing the shortcomings of current approaches
and embracing fresh methodologies.

Index Terms—drones, surveillance, ML models, IoT, drowning.

I. INTRODUCTION

Drones, also known as unmanned aerial vehicles (UAVs),
are efficient surveillance tools that function as aerial sentinels
as they often have cameras mounted on them. Applications
for drone-based surveillance include road traffic monitoring,
security, and precise geo-localization of targets for search and
rescue [1], [2], [5], [6], [8], [9], [10], [11], [12]. An onboard
object detection program [3] receives the video input from the
drone’s camera to identify nearby target objects.

A. Solution Approach

Our strategy involved utilizing a ResNet model trained on
dataset from the [4] Vega research paper. Leveraging both
test and train datasets, we determined an optimal altitude
that strikes a balance between accuracy and the area covered
by the drone’s camera. As outlined in the Vega paper, we
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recognized that higher altitudes enable broader coverage but
may compromise accuracy.

To enhance our methodology, we introduced sensor fusion,
combining Infrared and RGB images to augment detection ac-
curacy, particularly in distinguishing drowning from swimming
incidents [18], [19], [20], [21], [22], [23].

Our primary model, the YOLOVS, trained on around 1000
images, forms the backbone of our approach. The workflow
begins with the drone positioned at a safe height of 100m
(compliant with the government’s approved height of 120m).
The model initiates by executing a sensor fusion process,
generating a merged IR and RGB image. This composite image
aids in identifying drowning or swimming scenarios. Should
the accuracy fall below the specified threshold, our approach
draws from the concept introduced in the Vega research paper
known as the DroneZoom technique. This involves the drone
lowering its altitude to obtain a clearer view of the target,
thereby enhancing detection capabilities.

We summarize Cygnus’s Contributions:

1) Comprehensive System Architecture: Cygnus encom-
passes a robust system architecture comprising various critical
elements. Notably, it incorporates an MIS system, enabling
lifeguards to monitor situations effectively through a dedicated
application [24], [25], [26], [27], [28].

2) Advanced Drone Network: Cygnus boasts an adaptable
drone network capable of scaling optimally in scenarios such
as power surges. It includes features like drone waypoint
navigation and autonomous drone docking, allowing seamless
wireless charging [13], [14], [15], [16], [17].

3) Sensor Fusion: A pivotal addition to Cygnus is the
implementation of sensor fusion, merging Infrared (IR) and
RGB images, significantly enhancing detection accuracy.

4) Onboard Edge Computing: Cygnus leverages onboard
edge computing, a critical feature that minimizes detection
latency directly on the drone, thereby ensuring swift and
efficient processing.
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II. RELATED WORK
A. Drowning Detection Systems

In the domain of drowning detection and prevention, vari-
ous innovative approaches have been explored. These include
the use of Unmanned Aerial Vehicles (UAVs) for deploying
flotation devices in harsh sea conditions, shore-based cameras
integrated into comprehensive systems for timely intervention
and proactive monitoring, and image analysis techniques in
swimming pool environments. Drones have been leveraged for
live surveillance over bodies of water using computer vision
for real-time recognition and location of individuals at risk.
A novel proposal incorporates Edge Computing devices with a
lightweight convolutional autoencoder for unsupervised drown-
ing detection. Additionally, focused efforts on high-risk groups,
such as children and the elderly, integrate deep learning and
object recognition, autonomously deploying drones and noti-
fying local authorities [4-12]. Collectively, these contributions
offer a diverse landscape of drowning detection methodologies,
providing valuable insights into the field.

B. Wireless Senor Network

In the realm of WSN and mobile networks, significant
advancements include a mobile gateway system integrating a
quadcopter drone with a WSN for data collection. Addressing
WSN challenges, another proposal employs Thread, a Low-
Powered IPv6-based wireless protocol, with UAVs for extended
range, incorporating secure data transmission through Elliptic
Curve Cryptography. Research explores UAV communications,
emphasizing cellular-connected UAVs and UAV-enabled aerial
communication platforms. In IoT-based LoRa networks, in-
vestigations provide insights and recommendations. A com-
prehensive exploration defines nodes and devices in UAV-
based data collection, featuring various routing algorithms
[13-17]. These contributions collectively form a multifaceted
backdrop, covering mobile gateway design, WSN architecture,
UAV communications, IoT-based LoRa networks, and UAV-
based data collection, serving as a rich source of knowledge
and inspiration.

C. Sensor Fusion

Research in RGB and Infrared image processing intro-
duces a deep learning-based matching method using a densely
connected Convolutional Neural Network (CNN) to extract
common features from diverse spectral bands. Additionally,
a novel RGB-IR cross-input and sub-pixel upsampling net-
work enhances the spatial resolution of infrared images. A
survey categorizes RGB-infrared trackers into distinct groups.
In sensor calibration, a method facilitates external calibration
of a thermal infrared camera and a LiDAR sensor through the
design of a 3D calibration target. Advances include a multi-
scale transformation and norm optimization-based approach for
infrared and visible image fusion, a difference maximum loss
function to enhance CNN performance, and a combination

of Thermal Infrared Camera and LiDAR sensors for better
accuracy in autonomous vehicles. Lastly, a study introduces
an effective method for the fusion of RGB-D and thermal
sensor data to improve human detection accuracy [18-25].
These diverse contributions encompass various facets of RGB
and Infrared image processing, providing valuable context and
insights for the present study.

ITIT. PRELIMINARIES

In this section, we describe the preliminaries of our setting
and all the components involved in the system.

Drone: It is assumed that the drones employed in the
system has the ability to navigate in three dimensions and have
access to a GPS-based navigation system. In order to travel
the area and establish waypoints, the drones are additionally
equipped with 3D waypoint navigation. We’ll assume for
analytical simplicity that the drone travels between waypoints
at a constant velocity of v.

Cameras: We utilize a dual-camera setup consisting of two
cameras placed perpendicular to each other. One camera is
oriented to capture a front view, while the other is positioned
to obtain a downward view, enabling a comprehensive coverage
area for detection purposes. Each camera employs a wide-angle
lens to encompass a larger field of view and mitigate issues
associated with rotational motion that might cause blurriness
or unclear imagery.

For analytical purposes, let’s denote the field of view (FoV)
angle of each camera as 6 for the front-facing camera and
0, for the downward-facing camera, respectively. The area
covered by the image captured by the front-facing camera at
height h; from the ground plane is given by:

Ap = ky.h}

Similarly, for the downward-facing camera at height hy
above the ground plane:

Ay = kg.h3

Here, the constants k¢ and k4 are derived from the respective
FoV angles (6, 6,) and the aspect ratios of the cameras. The
area covered increases quadratically with the height 4.

Target: We assume that individuals appear in the area
according to a time-variant homogeneous Poisson process with
a rate A and a uniformly random location distribution. In
our scenario, these individuals represent people who may be
swimming or in distress, allowing us to detect and differ-
entiate between regular swimming and potential instances of
drowning. The parameter A\ serves as an input to our system,
governing the rate at which these individuals appear within the
monitored area.

Similar to modeling natural disasters, accidents on highways,
or intrusions in an area, a Poisson process provides a frame-
work to simulate the appearance of individuals—specifically,
people engaged in swimming activities or facing potential
danger in the water. This model enables us to analyze their
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behavior and detect critical situations, such as instances of
drowning, within the observed area.

Object Detection and quality metrics: The drone has an
inbuilt object detection program OD. The detector is based
on Transfer Learning which is implemented on YOLO Object
Detection Algorithm this program has been trained with dataset
with sufficient examples of the class of objects to detect. OD
outputs two parameters as part of a detection: a) Confidence
and b) A rectangular box that contains the object called
the bounding box. High confidence is often necessary in an
application like surveillance to definitively identify targets
without detecting false positives.

Detection Latency: If a target appears at time t in the area
and the drone detects the target at time t+A, then we consider
the detection latency to be A.

1) A- Maximum detection latency within which detection must be

reported

2) \- Object appearance rate or Input to our model (Unit: m2sec™)

3) 6; - Observation altitude from the front-facing camera of the drone 6;or
upper altitude.

4) 64 - Observation altitude from the down-facing camera of the drone 6; or
upper altitude.

Fig. 1. Notations used in derivations.

IV. OBJECT DETECTION TRENDS

In this section, we detail the trends in detection confidence
and Intersection over Union (IoU) of an energy-efficient ver-
sion of the Faster R-CNN object detector paired with the
InceptionResNet v2 backbone [9]. We empirically assess the
detector’s confidence and IoU by executing inference on a
test dataset comprising targets of diverse sizes. Our goal is to
pinpoint the optimal height for the drone, ensuring a balance
between detection accuracy and Area coverage.

Fig. 2. Cars observed from height of 200ft

Initially, we trained the Faster R-CNN model with the In-
ceptionResNet v2 backbone using a dataset comprising images
depicting outdoor scenes and including target objects such
as pedestrians, cars, and trucks. Subsequently, we curated
a testing dataset specifically composed of bird’s eye view
images capturing cars from various drone perspectives. The
observed trend reveals a decline in both detection confidence
and Intersection over Union (IoU) values as the target size
decreases, indicating that smaller targets are detected with
reduced precision.
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Fig. 3. Graph for plotting Object detection accuracy vs Height.

In this section, we elucidate the operational mechanism of
the drones. We strategically deploy drones at a specific altitude,
ensuring an optimal balance between the covered area and
detection accuracy. The utilization of [4] DroneZoom facilitates
the enhancement of accuracy by adjusting the drone’s height,
thereby allowing for a trade-off between optimal coverage and
increased precision.

This sensor fusion technique integrates both visible RGB
and infrared (IR) images through a complex fusion strategy
employing the VGGI19 neural network. The fusion process
encompasses multiple phases: beginning with low-pass fil-
tering applied to both RGB and IR images to extract their
respective ’low frequency’ components. Subsequently, a pre-
trained VGG19 model captures activations from specific layers,
followed by feature extraction to represent diverse attributes
within the images. The Sensor fusion generates saliency maps
accentuating crucial regions, effectively emphasizing relevant
details from both the visible RGB and infrared domains. The
final fused output amalgamates the low-frequency elements
with high-frequency components obtained from the saliency
maps, resulting in an enriched fused image that incorporates
informative content from both the RGB and IR sources.
We also use an image restoration method for motion-blurred
objects [27] due to the motion of the drones.
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Fig. 4. LoRaWAN Network Architecture.

V. SYSTEM OVERVIEW
A. Drone Charging

Optimizing drone delivery energy efficiency requires strate-
gic placement of charging stations. Using simulations and a
battery-aware power model, stations are located based on op-
timal flight parameters like delivery distance, payload weight,
and speed. This approach aims to minimize recharging travel
distance, reduce energy consumption, and enhance overall
network efficiency.

B. Wireless Sensor Network

Our focus is on optimizing LoRa network performance by
adjusting transmission power for End Devices (EDs) commu-
nicating with multiple gateways. We organize the network into
cells, each with EDs connected to a gateway, ensuring proxim-
ity for optimal communication. Strategic gateway placement,
guided by a Greedy Gateway Placement algorithm, balances
installation costs with network performance for an efficient
setup.

VI. IMPLEMENTATION

The Cygnus Drowning Detection System is designed around
a LoRa WAN network architecture. Each drone is equipped
with a GAP8 microprocessor responsible for merging RGB and
IR images and executing YOLOvVS8 for drowning detection. The
flight operations are managed by a STM32F4-powered Flight
Controller, while LoRa technology facilitates efficient location
transmission. The drone also features a GPS module for cap-
turing coordinates, and RGB and IR cameras are strategically
placed for comprehensive imaging.

Within the LoRa WAN network, a Network Server serves
as the Management Information System (MIS), storing data
in InfluxDB and forwarding it to the Application Server. The
Application Server hosts an end-user web application on the
lifeguard’s phone, providing real-time tracking of the drone’s
GPS location.

Drone starts
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Images Collection
mages Fusion

Detected
Drowning
erson ?,

Drone resumes
survillance

Start DroneZoom

Drowning
Confirmed 7,

: l
Sends location of
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location to MIS via
v LoRa network
Drones arrive at l
location of drowning
person Location data is
stored on the MIS
J database server
Drones start blinking ‘
using LEDs for visual
ad The location of the
drowning person is

¥ displayed on Interactive
Lifeguard reaches the 3pp used by Lifeguards

location by using the

app and visual aid
provided by the drones.

Person is rescued

Fig. 5. Flow Chart of the proposed system.

VII. EXPERIMENTS AND PERFORMANCE
ANALYSIS

The graph depicting “train/box_loss” (Fig. 6) provides a
visual insight into the training process of a model designed for
object detection. With the x-axis representing the progression
of training, denoting epochs, and the y-axis reflecting the corre-
sponding value of the “train/box_loss,” the graph encapsulates
the model’s performance over time. At the outset, as the x-
value stands at 0, the y-value is notably high at 1.8, indicating
a substantial loss associated with bounding box predictions.
This signifies the initial stage of training, where the model’s
predictions are relatively inaccurate. However, as training pro-
gresses and the x-value increases to 20, the y-value steadily
decreases to 0.8. This decline in the “train/box_loss” implies
significant improvement in the model’s ability to precisely
predict bounding boxes as it learns from the training data.
Thus, the graph serves as a visual testament to the model’s
evolving competency in accurately identifying objects within
images as the training process advances.

The precision graph of the YOLO V8 model spans 25
epochs on the x-axis, with precision values ranging from 0.5
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Algorithm 1 Enhanced Drone Routing Algorithm
Require: Drones, A, A
Ensure: Efficient drone routing and rescue operation
procedure MAINDRONEROUTING
InitializeDronesAndPaths ()
drone positions and fixed paths
while t rue do
for cach drone in Drones do
if DrowningPersonDetected(drone) then
if DistressSignalReceived(drone) then
DynamicAStarRouting (drone)
else
FixedPathRouting (drone)
DroneZoomOperation (drone,

> Initialize

PerformRescueMission (drone)
end if
end if
end for
ResumeSurveillance ()
end while
end procedure
procedure DYNAMICASTARROUTING(drone) >
Implement Dynamic A* for rerouting
// Update drone’s path dynamically
based on real-time information
// Consider the distress signal
location and optimize the path
accordingly
// Update drone’s path using the
Dynamic A% algorithm
end procedure
procedure FIXEDPATHROUTING(drone)
Fixed Path Routing
// Generate a fixed path for the
drone based on its current position and
destination
// This can be done using algorithms
such as Dijkstra’s or Ax
// Update the drone’s path to follow
the fixed path
end procedure

> Implement

at epoch 0 to 0.9 at epoch 25. Starting with a moderate
accuracy level, the model steadily improves its precision over
subsequent epochs. By epoch 25, it achieves a commendable
precision of 0.9, showcasing significant enhancement in object
detection accuracy. This graph serves as a clear visualization
of the model’s iterative refinement and increasing reliability
in accurately identifying objects within images throughout the
training process.

In this research, we use a dataset of about 1000 images

train/box_loss train/cls_loss

—e— results
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Fig. 6. Confusion Matrix for YOLOv8 model.

B

Fig. 7. Detection of Drowning person.

to conduct a thorough supervised learning experiment with
the YOLOvVS8 model. The binary labels used to meticulously
annotate the dataset are *1’ for swimming and ’0’ for drowning
scenarios (Fig. 7). The YOLOv8 model is trained on this
fully annotated dataset, which allows it to distinguish and
classify swimming and drowning actions with accuracy. We
assess the model’s memory, precision, and overall accuracy in
differentiating between drowning and swimming cases through
extensive testing. Upon completing the training of the YOLOvV8
model on our custom dataset, we achieved a precision rate
of 95%, a recall rate of 68%, and a mean Average Precision
(mAP) score of 83%.

VIII. CONCLUSION

In conclusion, Cygnus has successfully met its objectives,
establishing itself as an innovative aquatic safety solution. Its
comprehensive system architecture includes an integrated Man-
agement Information System (MIS) and a lifeguard application,
improving situational awareness. The advanced drone network
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Fig. 8. Precision of YOLOv8 Model.

in Cygnus, with adaptive scaling and features like waypoint
navigation, shows resilience even in challenging situations.
Sensor fusion, combining IR and RGB images, enhances
detection accuracy for improved water safety understanding.
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