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Abstract—The unauthorized entry of vessels into restricted
port areas poses significant security risks and regulatory chal-
lenges. Traditional surveillance methods often fall short of pro-
viding timely and comprehensive monitoring, leading to potential
security breaches and operational inefficiencies. We propose
a system that utilizes image stitching technology onboard the
drones for enhanced mapping and object detection applications.
This research addresses the issue of identifying unauthorized
watercraft and vessels entering authorized port regions and
notifying the appropriate authorities by transmitting real-time
coordinates of the intruding vessel. Unauthorized vessel detection
is carried out by using a Deep Learning Algorithm on the Micro-
processor onboard each drone. Pub-Sub Model is used for fast
and secure communication between the Drones and the MIS.
Authorities use drones to scan the designated area simultaneously,
processing images by image stitching and storing them in the
drones. It will process on the drone’s platform and verify the
authorization of the vessel, if the unauthorized vessel is detected,
then The Image along with the coordinates of the vessel is sent to
the MIS via the Pub-Sub Model. Drones process this by balancing
the workload over a certain period.

Index Terms—Maritime surveillance, Image stitching, Unau-
thorized vessels

I. INTRODUCTION

Advancements in technology have significantly enhanced
UAV capabilities in sectors like security and surveillance [1],
[2]. This paper presents a UAV-based system using image
stitching to improve mapping and object detection, focusing on
identifying unauthorized vessels in port regions. Unauthorized
vessel access poses serious security threats [3]. Traditional
surveillance methods often fail to provide timely monitor-
ing, leading to potential security breaches and operational
inefficiencies. Our approach employs the YOLO model on
the Res5 Sipeed Maixduino K210 for real-time detection and
identification of intruding vessels.

Image stitching technology seamlessly combines multiple
images into detailed maps, enabling drones to survey maritime
zones while processing images onboard. A Pub-Sub Model
facilitates real-time communication between drones and the
Maritime Information System (MIS), ensuring swift action
by authorities. Additionally, distributing the workload among
multiple drones optimizes resource efficiency and reduces
processing time [4], enhancing the overall effectiveness of
maritime surveillance operations.
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II. RELATED WORK

Recent research has extensively explored UAV networks for
surveillance, focusing on object detection optimization, com-
munication protocols, and overcoming inherent challenges.
The Drone-based Multi-scope Object Detection (DroMOD)
system [5] enhances object detection efficiency via drones but
faces latency issues due to reliance on transmitting changed
images. Projects like Vega [6] address tradeoffs between
coverage area, detection latency, and quality in drone-based
surveillance, proposing efficient deployment frameworks and
algorithms.

The SEAGULL project [7] highlights the importance of
integrated systems for maritime situation awareness, achieving
high precision and recall in vessel detection. Other notable
advancements include neural networks on embedded platforms
[8], efficient deployment of region-based object detectors [9],
and cost-effective aerial surveillance systems [10]. Collec-
tively, the literature demonstrates significant progress in UAV-
based surveillance, promising enhanced real-time public safety
and situational awareness.

III. PROPOSED METHODOLOGY
A. System Design

1) System components:

¢ Drone: The unmanned aerial vehicle, equipped with RGB
and IR cameras or imaging sensors, serves as the primary
data acquisition unit in the system. It maneuvers through
the airspace, sending and receiving images of targeted
areas or objects in real time. The drone also has onboard
processing capabilities.

o Receiver: The receiver processes data streamed from on-
board drones, undertaking initial raw data preprocessing.
Its function is pivotal in ensuring data conformity for
subsequent tasks such as image stitching and object detec-
tion essential for seamless progression in data processing
workflows.

o Controller: Upon detecting objects in the fused and
stitched image, the controller possesses the capability to
transmit both images and coordinates of the identified
objects. This functionality enhances situational awareness
and facilitates targeted response strategies in various
applications.
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Fig. 1. System diagram illustrating the integration of drones equipped with image sensors, receivers, controllers, and storage units, connected to a publish-
subscribe cluster. The publish-subscribe cluster hosts two topics: “Image Sharing” for inter-drone image sharing and ”Vessel Details” for conveying vessel
coordinates and images to the MIS. The MIS, a subscriber to the ”Vessel Details” topic, displays information on-screen and archives it in the database for

storage.

o Drone Storage: The drone’s onboard storage device tem-
porarily stores images received from other drones. These
images are then used for tasks like image stitching and
object detection. This setup enables quick access to data,
facilitating efficient processing and real-time decision-
making.

o Pub-Sub Model: The system employs the Pub-Sub model
to securely transfer images and coordinates between
drones and the Management Information System (MIS).
This ensures that the drone responsible for image stitch-
ing and object detection receives the necessary data
without direct coupling to other components.

o Management Information System: The MIS receives the
Image and coordinates of the unauthorised vessel through
the Pub-Sub Model. The MIS displays the coordinates of
the Unauthorized vessel on a Map along with the image
for identification. The above information is also sent to
the Database for storage.

o Database: The system makes use of a distributed NoSQL
database with a column-oriented layout for data storage.
This database uses cutting-edge technologies to effec-
tively organise and store data on top of a distributed file
system. A connector makes it easier for data to move
across components, promoting smooth system integration
and communication. With the help of this method, data
can be automatically moved from its source to its in-

tended storage place.

2) System Overview: After the drones are launched to pre-
established locations within the port area, the system divides
[11] the area into separate segments. With onboard RGB
and IR sensors for data collection, every drone takes high-
resolution photos of its assigned area on its own. The gathered
data is then subjected to sensor fusion, which combines data
from RGB and IR images to create a complete and precise
depiction of the surroundings. The drone system’s situational
awareness is improved by this fused data, allowing it to
recognise and react to any potential threats or anomalies in
the port area.

Once Sensor Fusion is finished, the drones start sending
the fused images to a specific network node so that they
can be processed further. The DroneBalance algorithm, which
optimally divides computational tasks among available drones
to maximise system efficiency and resource utilisation, is the
basis for the dynamic selection of this node. The chosen node
uses computer vision algorithms and techniques to carry out
image stitching and object detection tasks. [12]

A publish-subscribe communication model is used, with
Apache Kafka acting as the message broker, to enable smooth
communication and data exchange between drones and pro-
cessing nodes. Kafka is used for managing real-time data
streams produced by the drone system because of its high
throughput and low latency. “Image Sharing” and “Vessel
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Details” are two topics that are defined within the Kafka
ecosystem. The “Image Sharing” topic makes it easier for
drones to share their captured images, allowing for cooperative
image processing and analysis. Upon object detection, the
coordinates of the vessel and the image will be sent to the
Management Information System through “Vessel Details”.

Relevant data, including vessel coordinates and image data,
is extracted and sent to the Management Information System
(MIS) for additional analysis and decision-making after ob-
jects or anomalies within the captured images are successfully
detected. By acting as a central location for the storage,
analysis, and visualisation of the gathered data, the MIS gives
authorities situational awareness about port operations and
security.

The system architecture makes use of Apache HBase,
a distributed NoSQL database system, for dependable and
effective data management. Large volumes of heterogeneous
data produced by the drone system can be easily handled by
HBase thanks to its scalability, fault tolerance, and column-
oriented data storage. This allows for seamless integration with
the MIS and supports the analysis and retrieval of historical
data.

The DroneBalance Algorithm optimizes coverage in a cer-
tain area. It estimates the total distance D based on the area
width W and determines the number of drones needed n. Each
drone travels an equal fraction D’ of the total distance. In our
optimized algorithm, we have introduced a new parameter,
the threshold distance Dyyesn, Which is calculated as 70%
of D', as an example, to ensure efficient use of battery
power [13]. We chose 70% as the threshold value to provide
a buffer for the drones to return safely to their base after
completing their tasks. However, this value can be adjusted or
modified according to specific requirements and constraints.
For instance, setting the threshold to 30% may be appropriate
in scenarios where the area to be covered is relatively small
or the battery capacity of the drones is higher. Adjusting this
threshold value allows for flexibility in adapting the algorithm
to different situations while ensuring that the drones can return
safely to their base.

B. Image processing model

1) Sensor Fusion: In our research, we propose a sensor
fusion technique using the VGG19 neural network to integrate
RGB and infrared (IR) images. This fusion process enhances
object detection accuracy [14], particularly in low-light
conditions like nighttime surveillance. We apply low-pass
filtering and feature extraction to both image types, generating
saliency maps that highlight crucial regions. The final fused
output [15], [16] combines low-frequency elements with
high-frequency components, resulting in improved detection
capabilities. Additionally, to address motion blur caused
by drone movement, we incorporate an image restoration
method. Overall, our approach enhances maritime security
by enabling better detection of unauthorized vessels during
nighttime surveillance operations.

2) Image Stitching: In our research paper, we utilize image
stitching [17], [18] to create a composite image from multiple
images captured by drones. [19] These images, which have
undergone sensor fusion, are received from various drones
through a Pub-Sub cluster. We employ OpenCV for image
stitching, seamlessly combining these images into a larger,
unified image [20]. Object detection is then performed on the
stitched image.

Fig. 2. Image Acquisition Trajectory

3) Object Detection: The image processing model pro-
posed for marine port [21] surveillance leverages the YOLO
(You Only Look Once) architecture, with MobileNet_0.75
serving as the backbone neural network. YOLO is a state-
of-the-art real-time object detection system known for its
speed and accuracy, making it well-suited for deployment on
drones with limited computational resources. MobileNet_0.75,
a lightweight convolutional neural network (CNN), is chosen
as the backbone architecture to balance model efficiency and
performance.

4) Feature Extraction Backbone: The backbone architec-
ture, MobileNet_0.75, is responsible for extracting features
from input images. MobileNet_0.75 consists of depthwise sep-
arable convolutions and pointwise convolutions, which reduce
the computational complexity while preserving representation
quality. This enables efficient feature extraction from aerial
images captured by drones.

5) Loss Function: YOLO uses a custom loss function that
combines localization loss, confidence loss, and classifica-
tion loss. The localization loss penalizes errors in bounding
box predictions, while the confidence loss penalizes incorrect
confidence scores for object presence. The classification loss
penalizes the misclassification of object classes. This multi-
task loss function ensures that the model optimizes across all
aspects of object detection.

6) Transfer Learning with MobileNet_0.75: Transfer learn-
ing is employed to adapt the pre-trained MobileNet_ 0.75
model to the specific task of marine port surveillance. The pre-
trained MobileNet_0.75 model, trained on a large-scale dataset
such as ImageNet, serves as the initialization for the feature
extraction backbone of YOLO. By leveraging the learned
representations from ImageNet, the model can effectively
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capture high-level features relevant to object detection tasks,
even with limited labeled data in the target domain. During
transfer learning, only the parameters of the feature extraction
layers in MobileNet_0.75 are fine-tuned on the marine port
surveillance dataset, while the parameters of the detection
head are initialized randomly and trained from scratch. This
allows the model to adapt to the specific visual characteristics
and object classes present in marine port images captured by
drones.

7) Computational Efficiency Considerations: One of the
primary motivations for choosing YOLO with MobileNet_0.75
is its computational efficiency, which is crucial for real-time
object detection on drones equipped with Maixduino K210
boards. MobileNet_0.75 strikes a balance between model
size, inference speed, and accuracy, making it well-suited for
deployment on resource-constrained devices. Furthermore, the
unified architecture of YOLO enables end-to-end inference in
a single pass, minimizing computational overhead and memory
footprint during deployment.

In summary, the proposed model architecture combines the
speed and efficiency of YOLO with the lightweight design
of MobileNet_0.75 to achieve real-time object detection for
marine port surveillance using drones [22]. Transfer learning
with MobileNet_0.75 allows the model to leverage pre-trained
representations and adapt to the specific surveillance task,
while computational efficiency considerations ensure optimal
performance on edge devices. [23], [24]

IV. EXPERIMENTS AND PERFORMANCE ANALYSIS

In our research, we utilized a dataset comprising 3000
images, split into a training set of 2700 images and a validation
set of 300 images. Each image was annotated to categorize
vessels as Authorized or Unauthorized. Employing Transfer
Learning with the YOLO model, we trained our system,
achieving a peak accuracy of 78% on the validation set after
90 epochs of training.

Through dataset curation and strategic partitioning, we
ensured representative training and validation subsets.
Leveraging Transfer Learning with the YOLO model enabled
us to capitalize on pre-existing knowledge, resulting in precise

Algorithm 1 Optimized DroneBalance Algorithm
Require:
Total area width (W)
Number of drones available (n)
Weight, battery capacity, and weather conditions.
Threshold battery percentage (T') = 70%

Ensure:

Distance covered by each drone (D’)
Distribution of surveillance tasks among drones

1: Calculate the total distance to be covered (D) based on
the width of the area:

2: D = Function(W)

3: Determine the number of drones (n) needed based on the
width of the area:

4: n = Function(W)

5: Calculate the distance covered by each drone (D’) by
dividing the total distance (D) by the number of drones
(n):

6. D=2

7: Detern?ine the threshold distance (Dgyesn) for each drone
to cover such that they use 70% of their battery capacity:

8: Dipresh = 0.7 X D'

9: Initialize variables:

10: CurrentDronelndex = 1

11: CurrentBatteryPercentage = 100

12: Initialize array to track remaining distance for each drone:
RemainingDistance[l...n]

13: while CurrentDronelndex < n do

14: RemainingDistance[Current Dronelndex] = D’

15: while RemainingDistance|Current Dronelndex]| >
DLhresh do

16: Perform surveillance with the current drone cover-
ing distance Dypyresh.

17: RemainingDistance|CurrentDronelndex]— =
Dthresh

18: if RemainingDistance[Current Dronelndex] >
0 then

19: Stop onboard processing.

20: Assign the next drone in line (increment
CurrentDronelndex) for image stitching and object
detection tasks.

21: end if

22: end while

23: end while

24: Output the results:

25: Distance covered by each drone (D’)

26: Distribution of surveillance tasks among drones.
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Fig. 4. Visualizing unauthorized vessel detection on Res5 Microprocessor
screen with YOLO model.
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Fig. 5. Performance Evaluation of YOLO Model on Ships Images Dataset,
Analyzing Loss and Accuracy Dynamics.

vessel classification.

Learning curves are essential tools for comprehending the
training dynamics and efficacy of the YOLO model throughout
100 epochs. These curves encompass the loss curve, training
accuracy curve, and validation accuracy curve, each shedding
light on the model’s convergence and its ability to generalize.

A. Loss Curve

The behavior of the loss curve is notable during training.
Initially, over the first 5 epochs, the loss fluctuates, indicative
of the model’s exploration of parameter space. Subsequently,
there’s a sharp decline in loss until the 13th epoch, suggesting
rapid learning and enhanced fitting to the training data. Fol-
lowing this initial drop, the loss steadily decreases, reaching
a minimal value of 0.006 by the 100th epoch. This sustained
reduction in loss underscores the model’s capacity to refine
predictions and minimize errors progressively.

B. Training Accuracy Curve

The training accuracy curve offers insights into the model’s
performance on the training dataset. Initially, the accuracy

fluctuates for the initial 8 epochs as the model adapts to the
training data. However, beyond this phase, the curve stabilizes,
maintaining a relatively constant value around 0.16 for each
epoch. While the training accuracy remains consistent, it
indicates the model’s stable performance on the training set
throughout the training duration.

C. Validation Accuracy Curve

The validation accuracy curve assesses the model’s gener-
alization to unseen data across 100 epochs, with validation
conducted every 10 epochs. From the 10th epoch onwards,
the validation accuracy curve displays a promising upward
trajectory. Initially, at the 10th epoch, the validation accu-
racy stands at 0.2, indicating moderate performance on the
validation set. Subsequently, the validation accuracy steadily
increases, reaching 0.7 by the 20th epoch and continues to
gently rise in increments of approximately 0.015 every 10
epochs thereafter. The peak validation accuracy of 0.785 is
attained at the 90th epoch, highlighting the model’s adeptness
at generalizing to new data. Ultimately, by the 100th epoch, the
validation accuracy stabilizes at 0.748, signifying consistent
performance and minimal overfitting.

V. RESULTS AND DISCUSSION

1) Model Accuracy: The assessment of YOLO model ac-
curacy for marine port surveillance unveils significant trends
and performance metrics observed across 100 epochs. This
section delves into the outcomes derived from both training
and validation accuracy, providing valuable insights into the
model’s efficacy and its ability to generalize.

2) Training Accuracy: The YOLO model’s training accu-
racy stabilizes around 0.17 after an initial period of variance,
indicating a consistent correct prediction rate of 17 on the
training dataset throughout training. This stable training accu-
racy suggests effective learning of object recognition in marine
port images, demonstrating strong fitting to the training data.

TABLE 1
ACCURACY ANALYSIS TABLE OF OBJECT DETECTION MODEL

Training Accu- | Validation Ac-
Epoch

racy curacy
1 0.20 -
10 0.1479 0.2714
20 0.1659 0.7171
30 0.1659 0.7467
40 0.1631 0.7793
50 0.1629 0.7773
60 0.1653 0.7821
70 0.1639 0.7753
80 0.1646 0.7846
90 0.1631 0.7581
100 0.1647 0.7814

3) Validation Accuracy: The validation accuracy of the
YOLO model demonstrates a promising upward trajectory
across 100 epochs, indicating the model’s capacity to gener-
alize to unseen data. Commencing at 0.20 on the 10th epoch,
validation accuracy steadily increases to a peak of 0.785 by
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the 90th epoch. This progressive enhancement in validation
accuracy signifies the model’s adeptness at object detection in
marine port images and its ability to extend predictions to new
data.

4) Interpretation: The findings underscore the efficacy of
the YOLO model architecture for marine port surveillance
tasks. The stable training accuracy and ascending validation
accuracy depict the model’s robust learning and generalization
capabilities. These results affirm that the YOLO model, trained
across 100 epochs, delivers dependable object detection per-
formance in marine port settings, thereby laying a strong
groundwork for real-world deployment on drones equipped
with Maixduino K210 boards.

VI. CONCLUSION

Our research introduces a solution using image stitching and
object detection to identify unauthorized vessels in restricted
port regions [25]. Integrating deep learning techniques like
YOLO and Res5 Sipeed Maixduino K210 achieves real-time
detection, enhancing surveillance [25]. Efficient communica-
tion and distributed processing improve surveillance efficacy
[25], enhancing maritime safety.

Looking ahead, refining model architecture, optimizing
hyperparameters, and deploying on drones with Maixduino
K210 boards could further enhance real-time monitoring and
object detection in dynamic marine port environments. These
advancements promise improved security and operational ef-
ficiency, marking significant progress in marine port surveil-
lance applications.
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